Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Workplace Health Saf ; 71(3): 137-143, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2280708

ABSTRACT

BACKGROUND: With the emergence of SARS-CoV-2, healthcare workers (HCW) have relied on reusable personal protective equipment (PPE), including respirators and face shields (FSs). The effectiveness of decontamination procedures outside experimental settings is unclear. We examined the prevalence of surface contamination on reusable PPE used by HCWs at a hospital incorporating daily centralized decontamination and post-use wiping by sampling for common pathogens. METHOD: Samples were collected from HCWs' CleanSpace Halo respirator face masks (FMs) and FSs at the start of shift, immediately after use, and after cleaning with disinfecting wipes. Samples were analyzed for pathogens using the Applied Biosystems™ TaqPath™ COVID-19 Combo Kit and ThermoFisher TaqMan Array Card. Patient charts were reviewed for clinical correlation. FINDINGS: Of the 89 samples, 51 from FMs and 38 from FSs, none tested positive for SARS-CoV-2, despite 58 being obtained from PPE used in the care of patients with COVID-19, many with recent aerosol-generating procedures. Four samples tested positive (4.5%) for Staphylococcus aureus, two each from FMs and FSs. FMs that tested positive were not worn concurrently with FSs that tested positive. The FM and FS samples testing positive were worn in the care of patients without diagnosed S. aureus infection. No FMs tested positive following wipe-based disinfection, but both positive FS samples were found after disinfection wiping. CONCLUSION/APPLICATION TO PRACTICE: Contamination of reusable PPE appears uncommon, especially with SARS-CoV-2, when regular decontamination programs are in place. The rare presence of S. aureus highlights the importance of doffing procedures and hand hygiene by HCW to prevent surface contamination.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Critical Illness , Staphylococcus aureus , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Personal Protective Equipment , Health Personnel , Ventilators, Mechanical
2.
Biosens Bioelectron ; 197: 113803, 2022 Feb 01.
Article in English | MEDLINE | ID: covidwho-1517063

ABSTRACT

We report the rapid detection of SARS-CoV-2 in infected patients (mid-turbinate swabs and exhaled breath aerosol samples) in concentrations as low as 60 copies/mL of the virus in seconds by electrical transduction of the SARS-CoV-2 S1 spike protein antigen via SARS-CoV-2 S1 spike protein antibodies immobilized on bilayer quasi-freestanding epitaxial graphene without gate or signal amplification. The sensor demonstrates the spike protein antigen detection in a concentration as low as 1 ag/mL. The heterostructure of the SARS-CoV-2 antibody/graphene-based sensor is developed through a simple and low-cost fabrication technique. Furthermore, sensors integrated into a portable testing unit distinguished B.1.1.7 variant positive samples from infected patients (mid-turbinate swabs and saliva samples, 4000-8000 copies/mL) with a response time of as fast as 0.6 s. The sensor is reusable, allowing for reimmobilization of the crosslinker and antibodies on the biosensor after desorption of biomarkers by NaCl solution or heat treatment above 40 °C.


Subject(s)
Biosensing Techniques , COVID-19 , Graphite , Humans , SARS-CoV-2
3.
Nat Commun ; 12(1): 6, 2021 01 04.
Article in English | MEDLINE | ID: covidwho-1007633

ABSTRACT

The current practice for diagnosis of COVID-19, based on SARS-CoV-2 PCR testing of pharyngeal or respiratory specimens in a symptomatic patient at high epidemiologic risk, likely underestimates the true prevalence of infection. Serologic methods can more accurately estimate the disease burden by detecting infections missed by the limited testing performed to date. Here, we describe the validation of a coronavirus antigen microarray containing immunologically significant antigens from SARS-CoV-2, in addition to SARS-CoV, MERS-CoV, common human coronavirus strains, and other common respiratory viruses. A comparison of antibody profiles detected on the array from control sera collected prior to the SARS-CoV-2 pandemic versus convalescent blood specimens from virologically confirmed COVID-19 cases demonstrates near complete discrimination of these two groups, with improved performance from use of antigen combinations that include both spike protein and nucleoprotein. This array can be used as a diagnostic tool, as an epidemiologic tool to more accurately estimate the disease burden of COVID-19, and as a research tool to correlate antibody responses with clinical outcomes.


Subject(s)
Antibodies, Viral/blood , Antigens, Viral/blood , COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19/blood , COVID-19/diagnosis , COVID-19 Testing , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Microarray Analysis/methods , Middle East Respiratory Syndrome Coronavirus/immunology , Neutralization Tests , Severe acute respiratory syndrome-related coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL